Drug-Nutrition Interactions in Clinical Practice

J. Boullata, PharmD, RPh, BCNSP, FASPEN
Pharmacy Specialist with the Clinical Nutrition Support Services
Professor of Pharmacology & Therapeutics
University of Pennsylvania, Philadelphia, Pennsylvania, USA

Objectives

Upon completion of this session, the participant will be able to:

• Define the term and describe classes of drug-nutrition interactions
• Provide specific examples that could be seen in clinical practice
• Explain the clinician’s role in identifying and managing drug-nutrition interactions

Outline

• Introduction
• Defining DNIs
• Clinical Examples
• Recommendations
• Conclusions

Introduction

The Background

• History of Drug-Nutrient Interactions
 – Isolated reports and reviews
 – Focus on drug-food interactions
 – Memorize lists of interactions
 – Poor clinical relevance
 – Little mechanistic perspective

Drug (Medication) Use

• Prescription medicines
• Non-prescription medicines
• Natural/traditional medicines

Nutrition Variability

• Nutrition status
• Dietary habits
• Food composition
• Dietary supplement use

Defining Drug-Nutrition Interactions

“... reintroducing the topic of drug and nutrition interactions.”

“Drug-Nutrition Interaction”

• An interaction resulting from:
 – A physical, chemical, physiologic, or pathophysiologic relationship
• Between:
 – A drug
• And:
 – A nutrient, multiple nutrients, food in general, specific foods or components, or nutrition status

Why Does This Occur?

Mechanisms of Interaction

• Related to:
 – Physico-chemical attributes
 – Environmental matrix
 – Location
• Viewed as:
 – Pharmaceutical
 – Pharmacokinetic
 – Pharmacodynamic
How Does This Occur?

Pharmaceutical
- Solubility
- Stability

Pharmacokinetic
- Absorption
- Distribution
- Metabolism
- Excretion

Pharmacodynamic
- Effects
- Signal transduction
- Genetic polymorphisms
- Enzymes, transporters, receptors

Physiologic Outcome
- Bioavailability
- Volume of Distribution
- Clearance
- Biomarkers

Dose of drug administered

Pharmacokinetics
- Absorption
- Distribution
- Metabolism
- Excretion

Drug in tissues of distribution

Drug metabolized or excreted

Pharmacologic Effect

Clinical Response

TOXICITY Efficacy

Drug concentration at site of action
Transporters

<table>
<thead>
<tr>
<th>Gene Family</th>
<th>Protein</th>
<th>Substrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCB1</td>
<td>MDR1 (Pgp)</td>
<td>Cyclosporine, digoxin</td>
</tr>
<tr>
<td>ABCB1</td>
<td>MRP1</td>
<td>Folate, glutathione, adefovir, indinavir</td>
</tr>
<tr>
<td>ABCB2</td>
<td>MRP2</td>
<td>Amicilline</td>
</tr>
<tr>
<td>ABCB3</td>
<td>MRP3</td>
<td>Folate, etoposide, methotrexate</td>
</tr>
<tr>
<td>ABCG2</td>
<td>BCRP</td>
<td>Cimetidine</td>
</tr>
<tr>
<td>SLC5</td>
<td>SMVT</td>
<td>Folin, lipolic acid, pantothenic acid</td>
</tr>
<tr>
<td>SLC6</td>
<td>SERT</td>
<td>Sertraline</td>
</tr>
<tr>
<td>SLC15</td>
<td>PEPT</td>
<td>Ampicillin, captopril, cephalaxin, valacyclovir</td>
</tr>
<tr>
<td>SLC16</td>
<td>MCT</td>
<td>Aromatic amino acids, atorvastatin, salicylate</td>
</tr>
<tr>
<td>SLC19</td>
<td>RFC, THTR</td>
<td>Folate, thiamin, methotrexate</td>
</tr>
<tr>
<td>SLC21</td>
<td>OATP</td>
<td>Digoxin, prostaglandins</td>
</tr>
<tr>
<td>SLC22</td>
<td>OAT, OCT</td>
<td>Acyclovir, salicylates, carnitine</td>
</tr>
<tr>
<td>SLC23</td>
<td>SVCT</td>
<td>Ascorbic acid</td>
</tr>
<tr>
<td>SLC27</td>
<td>FATP</td>
<td>Fatty acids</td>
</tr>
<tr>
<td>SLC31</td>
<td>hCtr</td>
<td>Copper, cisplatin</td>
</tr>
</tbody>
</table>

Drug Metabolizing Enzymes

Clinical Consequences

- Altered disposition of drug and/or nutrient
 – Absorption, distribution, elimination

- Altered effect of drug and/or nutrient
 – Physiologic action at the cellular level

The End Result

- Clinically significant
 – Compromises nutrition status
 – Alters therapeutic drug response

Patient Outcome

<table>
<thead>
<tr>
<th>Outcome</th>
<th>No A</th>
<th>Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worsened</td>
<td>Nutrition Status</td>
<td>Improved</td>
</tr>
<tr>
<td>Toxic or ineffective</td>
<td>Drug Effect</td>
<td>Optimal</td>
</tr>
</tbody>
</table>

Classification

Precipitating Factor → Object of Interaction

• Nutrition status
• Food or food component
• Specific nutrient
• Drug

Classification System

- Recognize the object of the interaction
- Identify the precipitating factor
- Explain the likely location and mechanism
- Describe potential consequences

Clinical Examples

Nutrition Status → Drug

- Obesity
 - Lower drug concentration (ertapenem)
 - Higher toxicity (acyclovir)

- Micronutrients
 - Vitamin C deficiency prolongs drug action (pentobarb)
 - Zinc deficiency increases drug toxicity (aspirin)
Food Component → Drug

- **Enteral nutrition**
 - Impairs drug absorption (ciprofloxacin)

- **Food**
 - Interferes with drug absorption (alendronate)
 - Improves drug absorption (gabapentin-enacarbil)

Food Component → Drug

- **Grapefruit juice**
 - Increases drug bioavailability (atorvastatin, dasatinib, sildenafil, simvastatin) and risk for drug toxicity
 - Decreases drug bioavailability (etoposide, levothyroxine)
Specific Nutrient → Drug

- Iron
 - Reduces drug concentration (doxycycline)
- Vitamin C
 - May reduce drug activity (fluconazole)
- Vitamin D
 - Reduces drug concentration (atorvastatin)
- Daidzein
 - Increases drug bioavailability (theophylline)

Dietary Supplement → Drug

- ω3 Fatty Acids
 - Improves drug response (irinotecan) or reduces toxicity (paclitaxel)
- St John’s wort
 - Reduces drug concentrations (imatinib, irinotecan)
- Ginseng
 - Increases toxicity (imatinib)

Influence of ‘Polypharmacy’ on Nutrition

Key Points:
- About 82-91% of adults use at least one medication on a regular basis many taking five or more
- Medication use is a significant, seldom recognized, factor for altering nutrition status that is not routinely assessed prior to marketing
- Drug-induced poor nutrition status can be manifest by changes in body mass or composition, in metabolic function, or in nutrient biomarkers
- Mechanistically, drugs can impact food preparation/intake, gastrointestinal structure/function, nutrient absorption, distribution, metabolism or elimination

Drug → Nutrition Status

- Quetiapine
 - Alters body weight (weight gain)
- Sorafenib
 - Associated with altered body comp (sarcopenia)
- Capecitabine
 - May cause metabolic disorder (hypertriglyceridemia)
- Many medications
 - Alter GI tract function (taste change, anorexia, stomatitis, nausea, vomiting, diarrhea)

Drug → Specific Nutrient Status

- Carbamazepine
 - Lowers nutrient (vitamin D, biotin) status
- Ezetimibe
 - Reduces nutrient (vitamin E) absorption
- Isoniazid
 - Impairs nutrient (vitamin B6) status
- Ribavirin + peginterferon-α-2b
 - Impairs nutrient (vitamin B12) status
Recommendations

Clinician’s Role

- Use the framework to optimize patient outcome
- Clinical observation, analysis, and documentation

Is my patient’s change in nutrition status related to an interaction?

Is my patient’s unexpected drug effect related to an interaction?

Risk Factors

- Factors that influence risk for developing a clinically significant drug-nutrient interaction:
 - Age
 - Disease status
 - Genetic variants
 - Medication
 - Nutrition status

Expectation

- LEAST Significant
 - Acute use of one drug in a patient with good nutrition status

- WORST Scenario
 - Elderly patient, with poor nutrition status, requiring multiple chronic medications

Policy & Procedures

- TJC
 - Less prescriptive than in the past
 - Suggests performing evaluation of DN interactions

- P&T subcommittee or work group
 - High-risk meds (AEDs, antimicrobials, warfarin)
 - High-risk patients (elderly, obese, ICU)
 - Identify patients, assign responsibility, document interventions
 - Periodically review P&P and interventions
Patient Approach

- **Who**
 - Coordinated, interdisciplinary, team-based approach is considered critical to managing patients with potential drug-nutrition interactions

- **How**
 - Decision support systems integrated into screening tools and ordering systems could be valuable

The Drug Interaction Probability Scoring System and Scale

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>Unknown or N/A</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are there previous credible reports of this interaction in humans?</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Is the observed interaction consistent with the known interactive properties of the precipitating factor?</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Is the observed interaction consistent with the known interactive properties of the object?</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Is the event consistent with the known or reasonable time course of the interaction (event mild or severe)?</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Did the interaction exist prior to commencement of the precipitating factor with no change in the event?</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>If yes, did the interaction decrease when the precipitating factor was discontinued?</td>
<td>+2</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>Are there reasonable alternative causes for the event?</td>
<td>+1</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Adapted from: Ann Pharmacother 2007;41:674

Conclusions

Drug-Nutrition Interactions

- Relevant to every day clinical practice
- Requires a systematic patient assessment
- Much more research is still needed (mechanisms, management)
- Better incorporate into the process of drug development, regulation, and review
Outline

• Introduction
• Defining DNIs
• Clinical Examples
• Recommendations
• Conclusions